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Longitudinal acoustic instabilities
in slender solid propellant rockets:

linear analysis
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To describe the acoustic instabilities in the combustion chambers of laterally burning
solid propellant rockets the interaction of the mean flow with the acoustic waves is
analysed, using multiple scale techniques, for realistic cases in which the combustion
chamber is slender and the nozzle area is small compared with the cross-sectional
area of the chamber. Associated with the longitudinal acoustic oscillations we find
vorticity and entropy waves, with a wavelength typically small compared with the
radius of the chamber, penetrating deeply into the chamber. We obtain a set of
differential equations to calculate the radial and axial dependence of the amplitude
of these waves. The boundary conditions are provided by the acoustic admittance of
the propellant surface, given by an existing analysis of the thin gas-phase reaction
layer adjacent to the solid–gas interface, and of the nozzle, accounting here for the
possible effect of the vorticity and entropy waves. The equations are integrated in
closed form and the results provide the growth rate of the disturbances, which we use
to determine the conditions for instability of the longitudinal oscillations.

1. Introduction
The purpose of this paper is to clarify the role of the vorticity and entropy

waves that accompany acoustic oscillations in solid rocket motors in their acoustic
instabilities. With this aim, we shall consider the simple case of an axis-symmetric
configuration, in which the solid propellant is of cylindrical shape, bounded externally
by an enclosure and with a cylindrical gaseous cavity of circular shape inside. The
cavity is closed at one end by an endwall and the other end is attached to a nozzle,
where the gases generated by the combustion process in the internal surface of the
propellant are accelerated to supersonic speeds.

If the Mach number in the nozzle throat is close to unity, the ratio of its area, At, to
the internal surface area, As, of the propellant bounding the cavity must be, as derived
from mass conservation considerations, of the order of the Mach number Mb = Vb/cb
of the gaseous combustion products leaving, with velocity Vb, the thin reaction layer
adjacent to the surface of the propellant. Mb � 1, because Vb is typically of the order
of 1 m s−1, very small compared with the sound velocity cb of the burned gases. Due
to the small value of At/As, the attenuation of any acoustic oscillations that may be
excited in the nearly closed gaseous cavity is very weak, and this may contribute to
the existence of combustion instabilities in the chamber. The analysis of the acoustic
instabilities has received considerable attention in the literature; see, for example, the
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Figure 1. Chamber geometry, coordinate system and streamlines of the basic steady flow.

review articles of Culick & Yang (1992), Kuentzmann (1991), T’ien (1984), and the
special issue (July–August 1995) of the Journal of Propulsion and Power, notably the
paper of Flandro (1995).

The acoustic oscillations in the chamber are strongly influenced by the quasi-
steady mean flow resulting from the combustion process. The chemical reactions
are confined to thin layers, in the solid and gas, adjacent to the solid–gas interface.
If the heat generated by the gas-phase chemical reaction must reach the solid by
conduction, to contribute to its gasification, the Reynolds number Vblf/νb, based on
the thickness of the gas-phase reaction layer lf and the kinematic viscosity νb – of the
order of the thermal diffusivity αb – of the burned gases, must be of order unity at
most. Because lf = αb/Vb is very small compared with the transverse size a of the
combustion chamber, the Reynolds number of the flow in the chamber Vba/νb is very
large compared with unity. Therefore the flow outside the reaction layer should be
described, in a first approximation, with the Euler equations. This flow is rotational
because the gas emerges from the solid, in a direction normal to the interface, with a
stagnation pressure that varies along the chamber. The basic flow in the chamber is
quasi-steady, because the time required to change the solid gasification rate and the
chamber geometry is the flow residence time in the chamber, a/Vb, times the ratio
ρs/ρb, of the solid and gas densities, large compared with unity.

The description of the basic flow, with streamlines sketched in figure 1, and of the
acoustic instabilities is considerably simplified if we confine the analysis to slender
rockets, with cylindrical combustion cavities of circular cross-section of radius a small
compared with its length L. The analysis can be simplified because the transverse
component of the velocity, of order Vb, is small compared with the longitudinal
component, of order Vb/ε

′, where ε′ = a/L � 1. Thus the gas flow, which comes
out of the reaction layer with a velocity Vb nearly normal to the solid interface,
turns toward the chamber axis to become a quasi-parallel flow. The longitudinal
velocity components when measured in terms of cb are of order ε = Mb/ε

′, still small
compared with unity for typical rockets; with values of ε′ of order 1/20 and Mb of
order 1/400, ε is also of order 1/20.

The transverse pressure variations, measured in terms of the quasi-steady value pb
of the pressure at the centre point of the closed end of the chamber are of order
M2

bpb, small when compared with the longitudinal pressure variations which are of
order ε2pb, also small compared with pb. Thus, this pressure can be used to evaluate
the steady burning rate, and therefore Vb, which can be considered as constant along
the burning surface of the solid.

In slender rockets, we encounter acoustic instabilities of low frequency, associated
with the longitudinal acoustic modes, with periods of order L/cb, and high-frequency
instabilities, associated with the transverse acoustic modes, with periods of order a/cb.
This paper is devoted to the linear analysis of the longitudinal acoustic instabilities
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in slender rocket combustion chambers of circular cross-section. The wavelength of
these acoustic oscillations is of order L and their characteristic oscillation time is
ta = L/cb. The typical value of the residence time of a fluid particle in the chamber
is tr = a/Vb, also of the order of the ratio of L to the characteristic longitudinal
velocity Vb/ε

′. Because ta/tr = ε � 1, a fluid particle after entering the combustion
chamber undergoes many oscillations before leaving the chamber through the nozzle.
In addition to these two disparate time scales, ta and tr , which will be used in the
multiple scale analysis that follows, we also encounter another much longer time scale,
namely the burn-out time tb = (a/Vb)ρs/ρb. When describing the oscillations of a gas
particle, during its residence time in the chamber, the regression of the solid surface
can be ignored; however, the parameters characterizing the acoustic instabilities will
change during the burning time because of the changes in a.

When analysing the longitudinal instabilities we encounter several regimes, de-
pending on the value of the ratio of the expected response time of the flame,
tf = lf/Vb = αb/V

2
b , to the acoustic time, ta = L/cb. The regime that we shall analyse

corresponds to values of tf/ta small compared with unity; for these values, the flame
response, which is given by the existing analysis of the thin reaction layer, leads
to vorticity and entropy waves in the main, non-reacting, region of the chamber.
The existence of vorticity in the basic flow and in the acoustic oscillations is due,
as shown by Flandro (1974, 1989, 1995), to the no-slip condition of the gas flow
coming out of the solid–gas interface. The axial velocity component is zero at this
interface and grows with the distance from the solid surface, due to the effect of the
longitudinal pressure gradient. Then, the gases coming out of the thin reaction layer
have a steady axial velocity component, of order (lf/a)Vb/ε

′, negligible compared
with Vb/ε

′ because lf/a � 1, but a non-zero value of the vorticity, determined by
the requirement that the longitudinal velocity component is zero at the solid surface.
Due to the oscillating character of the axial pressure gradient, a fluid particle, after
coming out of the solid, gains an axial velocity that oscillates with the characteristic
time L/cb of the acoustics. The wavelength in the radial direction of the oscillations is
of the order l0 = VbL/cb = εa� lf . These waves have been demonstrated experimen-
tally and numerically; see, for example, Vuillot & Kuentzmann (1986), Vuillot (1991),
Vuillot & Avalon (1991) and the review by Flandro (1995). There are similar radial
temperature oscillations due to the heating of the fluid particles under compression
by the oscillating pressure field, because they come out of the thin reaction zone with
nearly constant temperature Tb – and thus with an oscillating entropy – a consequence
of the small value of the characteristic response time of the reaction layer (of order
lf/Vb in the gas phase) compared with L/cb.

Although the existence of these vorticity and entropy waves is not due to viscous
and heat conduction effects, these are responsible for their attenuation in a time of
the order tat = l20/νb. We shall describe in this paper the attenuation of vorticity and
entropy waves in the practically important distinguished limiting case Vbl

2
0/νb ' a,

when the waves, travelling with a radial velocity of order Vb, are only damped when
they penetrate deeply into the chamber. This regime was also identified by Majdalani
& Van Moorhem (1997a, b) in their approximate analysis of the acoustic boundary
layer in solid rocket motors. (See also the recent work of Zhao et al. (2000) for a
description of the vorticity waves with velocity forcing at the endwall.) When looking
at this distinguished limiting case, for which the Reynolds number Vba/νb, typically
of order a/lf , is of order 1/ε2, we also describe the cases, with smaller Reynolds
numbers, when the damping occurs in a thin layer adjacent to the thinner reaction
layer, or the opposite case when the damping of the waves occurs only near the axis.
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In summary, our purpose is to obtain a linear description of the longitudinal
acoustic instabilities of slender solid propellant rockets, when the ratio, ε′ = a/L, of
the radius a and the length L of the cylindrical gaseous combustion chamber is small
compared with unity, and the characteristic value ε = Mb/ε

′ of the Mach number
of the steady axial velocity – of the order of the ratio of the nozzle throat area to
the cross-sectional area of the chamber – is ε � 1. In the analysis we shall take into
account the existence of four different time scales: tf = lf/Vb, ta = L/cb, tat = l20/νb
and tr = a/Vb, in addition to the much longer burning time tb which will not appear
in our analysis involving much shorter time scales. There are also five length scales:
l0 = Vbta = εa, lat = Vbtat, a, L and the flame thickness lf = αb/V

2
b of the gas-phase

reaction layer, which separates the solid propellant from the main non-reacting region
of the gaseous cavity.

We shall analyse the distinguished regime when tf/ta � 1 and lat/a = tat/tr =
ε2Vba/νb is of order unity. In this limit the response of the thin gas-phase reaction
layer is expected to be quasi-steady as described by Denison & Baum (1961), Culick
(1967), Krier et al. (1968) and T’ien (1972). The more recent work of Clavin & Lazimi
(1992) shows that, although the temperature of the combustion gases Tb leaving the
layer remains constant, the unsteady effects, coming from the solid and gas phases,
modify the response function even at low frequencies. We shall give, in §§ 3 and 4,
using in a consistent way a multiple scales technique, an unambiguous description
of the flow and temperature field in the main non-reacting region. To obtain the
required boundary conditions on the outer envelope of the domain we shall use the
results of the existing analysis of the thin reaction layer and of the analysis of the
unsteady non-uniform flow in the nozzle, given in § 5. The linear stability exponent
of the system is obtained in § 6. The discussion of the results for the stability domain
is presented in § 7, where we use the solid propellant response function calculated
by Clavin & Lazimi (1992) to show the influence of the main parameters of the
propellant and the chamber.

We shall not consider in this paper the other distinguished regime in which
tf ∼ ta ∼ tat, and as a consequence lf ∼ l0 ∼ lat, when, as described by Clavin
& Lazimi (1992), unsteady effects play a significant role in the reaction layer and the
vorticity and entropy waves are attenuated before the fluid particles leave the layer.

2. Quasi-steady flow field
The rotational flow field of the combustion gases after leaving the thin reaction

layer was described by Culick (1966) for cylindrical axisymmetric chambers, neglect-
ing the density variations in the chamber under the assumption that the Mach number
is small. An experimental confirmation of this flow description was given by Dunlap,
Willoughby & Hermsen (1974), using a cylindrical chamber with porous wall. The
structure of the rotational flow of incompressible fluids in slender chambers with
porous walls had been described previously by Taylor (1956). The effects of com-
pressibility, which are only important when the Mach number is not small compared
with unity, were included for the flow in slender chambers by Balakrishnan, Liñán &
Williams (1992).

The incompressible flow field described by Culick (1966) corresponds to a self-
similar solution of the Euler equations, with the stream function, Ψ , and the axial
and radial velocity components, U and V , given by

Ψ/εa2cb = Ψ̃ = x sin ( 1
2
πr2) = xF(r), (1)
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Figure 2. Steady axial and radial velocity profiles, Ũ/(2x) and Ṽ , and the functions Σ(r) and I(r),
defined in equation (62).

U/εcb = Ũ = πx cos ( 1
2
πr2) = x

1

r

dF

dr
, (2)

V/Vb = Ṽ = −sin ( 1
2
πr2)

r
= −1

r
F(r), (3)

in terms of the coordinates x and r measured, respectively, in terms of the chamber
length L and radius a. The functions Ũ/2x and Ṽ of r are shown in figure 2.

As indicated by Dunlap et al. (1979), the inviscid solution fails in the head-end
region, of size a, of the chamber because the boundary layer on the non-burning wall
separates due to an adverse radial pressure gradient, as described by Balakrishnan et
al. (1992). The self-similar solution, (1)–(3), although it also fails in a region of size
a near the nozzle end of the chamber, is applicable to the description of the flow in
most of the chamber in the cases considered here with values of the slenderness ratio,
L/a = 1/ε′, large compared with unity.

The quasi-steady variations of pressure, temperature and density in the chamber,
measured in terms of their values pb, Tb and ρb = pb/RgTb in the head-end of the
chamber, are small, of the order of the square of the characteristic value ε = Mb/ε

′
of the Mach number of the axial flow, which we consider to be small compared with
unity. These variations will not be included in (5) below, because they will not play a
role in our final analysis.

The temperature Tb of the burned gases is determined by global thermo-chemistry
considerations of the quasi-steady response of the reaction layer, which also lead to
a relation determining the velocity Vb = Mbcb of the burned gases as a function of
the chamber pressure pb. The nozzle throat area At is given in terms of Vb, or ε, and
γ, the ratio of the specific heats, by the relation

At

πa2
= 2ε

(
γ + 1

2

)(γ+1)/2(γ−1)

, (4)
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resulting from the global mass conservation in the chamber and the assumption of
uniform choked flow at the throat of the nozzle. The typical values of the Mach
number Mb of the burned gases at the end of the reaction layer are in the range
10−3 to 10−2, which together with the typical small value of ε′ imply small values of
ε and, hence, of the ratio At/πa

2 of the nozzle area to the cross-sectional area of the
chamber.

3. Formulation of the linear stability problem
We shall write in this section the equations that describe the evolution of the linear

perturbations of the basic quasi-steady flow, associated with the longitudinal acoustic
waves in the chamber.

We write the fluid variables in the following form:

p/pb = 1 + λp′, T/Tb = 1 + λT ′, ρ/ρb = 1 + λρ′, (5)

u/cb = εŨ + λu′, v/(ε′cb) = ε(Ṽ + λv′), (6)

where the variables with tilde and primes representing, respectively, the steady flow
and the oscillations, are assumed to be of order unity. The amplitude of the oscillations
is measured by λ � 1 in our linear stability analysis, where we neglect terms not
linear in λ. When λ grows to values of order ε, nonlinear terms affect the growth or
decay of the oscillations.

The scaling used to measure the transverse velocity component of the oscillation
takes into account that, due to the quasi-steady response of the gasification rate to
the pressure oscillations, they are of the order λp′Vb. In the analysis we shall also
consider both ε′ and ε – typically of order ε′ – to be small compared with unity, so
that a multiple scales perturbation analysis will be used to describe the oscillations.

We shall begin by writing the Navier–Stokes equations in non-dimensional form
using cylindrical coordinates, assuming the flow to have axial symmetry. The time
is measured in terms of the acoustic time ta, and x and r are measured in terms of
L and a. We introduce the definitions of (5) and (6), and neglect in the equations
the terms not linear in λ. Then, we obtain the following system of equations for the
oscillations:

Dρ′

Dt
+
∂u′

∂x
+ ε

1

r

∂(rv′)
∂r

= 0, (7)

DT ′

Dt
− γ − 1

γ

Dp′

Dt
=

ν

P r
ε3 1

r

∂

∂r

(
r
∂T ′

∂r

)
, (8)

Du′

Dt
+ εu′

∂Ũ

∂x
+

1

γ

∂p′

∂x
= νε3 1

r

∂

∂r

(
r
∂u′

∂r

)
, (9)

∂p′

∂r
= 0, (10)

p′ − ρ′ − T ′ = 0. (11)

In (7)–(11) Pr = νb/αb is the Prandtl number, of order unity, and ν = νb/aVbε
2 =

νb/ε
′ε3acb is the non-dimensional kinematic viscosity, defined so that when ν is of

order unity, corresponding to the distinguished limit of our analysis, the vorticity
waves travel radially distances of the order of the chamber radius before they are
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damped. The material derivative in the above equations takes the form

D

Dt
=

∂

∂t
+ εŨ

∂

∂x
+ εṼ

∂

∂r
. (12)

We have neglected in these equations all the terms of order ε2 or higher, except for
the viscous and heat transfer terms, apparently of order ε3, appearing in (8) and (9).
These terms, which are responsible for the attenuation of the entropy and vorticity
waves, are in fact of order ε due to the rapid radial variations, with scale ε, of T ′ and
u′. The other terms left out of the system of equations (7)–(11) do not enter into our
linear stability analysis when ε and ε′ are both small.

The equations are complemented with the following boundary conditions to be
used in our asymptotic analysis:

(i) At r = 0 the symmetry condition,

v′ = 0. (13)

(ii) At r = 1 matching conditions with the thin gas-phase reaction layer,

no-slip condition

u′ = 0, (14)

constant temperature of the combustion gases

T ′ = 0, (15)

solid-propellant admittance condition

v′ = −Abp′. (16)

This relation, where the solid propellant admittance Ab, of order unity, is a function
of the oscillation frequency and of the physical properties of the propellant and the
combustion products, results from the analysis of the thin reaction layer, which also
leads to T ′ = 0. For the dependence of Ab on the oscillation frequency see Clavin
& Lazimi (1992). The effect of the oscillating component v′ of the radial velocity
was neglected in the analysis of Majdalani & Van Moorhem (1997), but it plays an
essential role in our analysis.

(iii) At x = 0, the non-burning head-end of the chamber, we will allow the radial
velocity to be non-zero in our large Reynolds number analysis, which does not include
a description of the structure of the head-end boundary layer, but we shall enforce

u′ = 0. (17)

The description of the boundary conditions at the chamber exit, where the parameter
ε′ also plays a role, will be postponed to § 5.

4. Multiple scale analysis
As indicated above, and as shown in previous analysis and experiments (see Flandro

1989, 1995; Avalon & Comas 1991; Vuillot 1991; Vuillot & Avalon 1991; Lupoglazoff
& Vuillot 1991), the acoustic oscillations in the chamber lead to vorticity as well as
entropy waves. These have a wavelength, variable with r, of order l0 = εa, and their
amplitude will change, due to viscous and heat conduction damping and also due to
flow field interaction, at radial distances of order a in the distinguished regime that
we shall analyse with a multiple scale technique (see for example Bender & Orszag
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1978). Because the fast oscillations occur in the radial direction we shall introduce, in
addition to the slow radial variable r, the following fast radial variable

ξ =
1

ε

∫ r

1

dr

Ṽ
= −1

ε

1

π
ln [tan ( 1

4
πr2)] =

1

ε
Σ(r), (18)

which is the time, in units of the acoustic time, of travel of a fluid particle from r = 1
to r. Σ/ε, where Σ(r) is plotted in figure 2, characterizes the phase of the vorticity and
entropy oscillations of the fluid particles. We shall also introduce two time variables:
the fast time t, based on the acoustic time, and the slow time variable τ = εt, based
on the residence time a/Vb, which, in our distinguished regime, is of the order of the
attenuation time, tat, of the vorticity and entropy waves.

With the introduction of the new fast and slow variables the radial and time
derivatives, appearing in (7)–(10), transform to

∂

∂r
→ ∂

∂r
+

1

ε

1

Ṽ

∂

∂ξ
,

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
, (19)

when ξ and τ are considered as independent variables, together with r, x and t. The
final form taken by the equations is

∂ρ′

∂t
+
∂ρ′

∂ξ
+ ε

[
∂ρ′

∂τ
+ Ũ

∂ρ′

∂x
+ Ṽ

∂ρ′

∂r

]
+
∂u′

∂x
+

1

Ṽ

∂v′

∂ξ
+ ε

1

r

∂(rv′)
∂r

= 0, (20)

∂T ′

∂t
+
∂T ′

∂ξ
+ ε

[
∂T ′

∂τ
+ Ũ

∂T ′

∂x
+ Ṽ

∂T ′

∂r

]
− γ − 1

γ

[
∂p′

∂t
+ ε

∂p′

∂τ
+ εŨ

∂p′

∂x

]
= ε

ν

P r

1

Ṽ 2

∂2T ′

∂ξ2
, (21)

∂u′

∂t
+
∂u′

∂ξ
+ ε

[
∂u′

∂τ
+ Ũ

∂u′

∂x
+ Ṽ

∂u′

∂r
+ u′

∂Ũ

∂x

]
+

1

γ

∂p′

∂x
= εν

1

Ṽ 2

∂2u′

∂ξ2
, (22)

∂p′

∂r
+

1

ε

1

Ṽ

∂p′

∂ξ
= 0, (23)

while (11) remains unchanged. Notice that in the distinguished regime that we analyse,
νb/νc = ν of order unity, the viscous and heat conduction terms are of order ε.

4.1. Perturbation scheme

Regular multiple scale perturbation techniques are used to solve the problem. The
acoustic fluctuations, p′, T ′, ρ′, u′ and v′, are expanded in perturbation series in powers
of the small parameter ε, of the form

( )′ = ( )0 + ε( )1 + · · · , (24)

where the coefficients in the expansion, for example u0 and u1 in the expansion for u′,
are bounded functions, of order unity, of the variables t, τ, ξ, r and x. These, in the
linear acoustic analysis that we carry out with multiple scales, are periodic functions
of t and ξ. For the solid-propellant admittance function we write

Ab = Ab0
+ εAb1

+ · · · . (25)

If these expansions are inserted into (20)–(23), (11) and boundary conditions
(13)–(17), the following system of equations is generated:
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At O(1):

−∂v0

∂ξ
= Ṽ

[
∂u0

∂x
+
∂ρ0

∂t
+
∂ρ0

∂ξ

]
, (26)

∂T0

∂t
+
∂T0

∂ξ
− γ − 1

γ

∂p0

∂t
= 0, (27)

∂u0

∂t
+
∂u0

∂ξ
+

1

γ

∂p0

∂x
= 0, (28)

∂p0

∂r
=
∂p0

∂ξ
= 0, (29)

p0 − ρ0 − T0 = 0; (30)

with the boundary conditions:

at r = 0:

v0 = 0; (31)

at r = 1:

u0 = 0, T0 = 0, (32)

v0 = −Ab0
p0; (33)

at x = 0:

u0 = 0. (34)

At O(ε):

−∂v1

∂ξ
= Ṽ

[
∂u1

∂x
+
∂ρ1

∂t
+
∂ρ1

∂ξ
+
v0

r
+
∂v0

∂r
+
∂ρ0

∂τ
+ Ũ

∂ρ0

∂x
+ Ṽ

∂ρ0

∂r

]
, (35)

∂T1

∂t
+
∂T1

∂ξ
−γ − 1

γ

[
∂p1

∂t
+
∂p0

∂τ
+ Ũ

∂p0

∂x

]
+
∂T0

∂τ
+Ũ

∂T0

∂x
+Ṽ

∂T0

∂r
=

ν

P r

1

Ṽ 2

∂2T0

∂ξ2
, (36)

∂u1

∂t
+
∂u1

∂ξ
+

1

γ

∂p1

∂x
+
∂u0

∂τ
+ Ũ

∂u0

∂x
+ Ṽ

∂u0

∂r
+ u0

∂Ũ

∂x
= ν

1

Ṽ 2

∂2u0

∂ξ2
, (37)

∂p1

∂r
=
∂p1

∂ξ
= 0, (38)

p1 − ρ1 − T1 = 0, (39)

with the boundary conditions:

at r = 0:

v1 = 0, (40)

at r = 1:

u1 = 0, T1 = 0, (41)

v1 = −Ab1
p0 − Ab0

p1, (42)

at x = 0:

u1 = 0. (43)
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4.2. Acoustic flow field calculations

We are considering here oscillations of low frequency, associated with acoustic lon-
gitudinal waves. Consequently, as will be shown below, the pressure perturbations of
zeroth-order correspond to axial plane standing waves. When describing the linear
acoustic oscillations we can assume a harmonic dependence of the time variables
of the form eiωt+στ. The fast time dependence eiωt involves the real dimensionless
angular frequency ω, of order unity. The growth, or decay, of the amplitude is slow,
represented by the factor eστ, involving the long time scale. The stability exponent σ
is a complex number, σ = σR +iσI ; the sign of the real part of σ gives the growth rate
of the oscillations (σR > 0 implying instability); the imaginary part of σ represents a
frequency shift, a correction to ω, of order ε. Both ω and σ are unknown eigenvalues
of the problem, which must be determined as part of the solution. Equations (29)
and (38) show that up to the order considered, p′ is independent of ξ and r. Then,
the structure of the zeroth-order system (27)–(30), where due to our choice of ξ the
mean flow does not appear, allows us to write the solution in the form

p0 = A(x) eiωt+στ, (44)

T0 =
γ − 1

γ
A(x) eiωt+στ + T̄0(x, r) eiω(t−ξ)+στ, (45)

ρ0 =
1

γ
A(x) eiωt+στ − T̄0(x, r) eiω(t−ξ)+στ, (46)

u0 =
i

γω
Ax(x) eiωt+στ + ū0(x, r) eiω(t−ξ)+στ, (47)

where the temperature, density and velocity fields are shown decomposed into two
parts. The first part, as well as p0, corresponds to the isentropic irrotational classical
acoustic oscillations, T̂ ′0, ρ̂′0 and û′0. The second part represents the entropy and
vorticity waves, T̄ ′0, ρ̄′0 and ū′0, associated with the isothermal and the no-slip condition
T0 = 0 and u0 = 0 at the propellant surface r = 1, ξ = 0, so that T̄0(x, 1) =
−A(x)(γ − 1)/γ and ū0(x, 1) = −Ax(x)i/γω. Note that the entropy variations from
the basic state, when scaled with cv , are given by s′ = T ′ − (γ − 1)ρ′, and in a first
approximation are equal to γ times the last term in (45). The entropy and vorticity
waves have the phase iω(t− ξ), corresponding to the time (t− ξ) of departure of the
particle from the propellant surface, to be compared with the phase iωt of the acoustic
waves. The entropy s′ and vorticity ω′θ , measured with cv and cb/εa respectively, are
given, for the zeroth-order solution, by

s0 = s̄0(x, r) eiω(t−ξ)+στ = γT̄0(x, r) eiω(t−ξ)+στ, (48)

ωθ0
= ω̄θ0

(x, r) eiω(t−ξ)+στ = − 1

Ṽ
ū0(x, r) eiω(t−ξ)+στ. (49)

The amplitude A(x) of the acoustic pressure oscillations and the amplitudes, T̄0

and ū0, of the entropy and vorticity waves can be determined by eliminating secular
terms and using the solvability conditions of (26) and of (36)–(37), corresponding to
the terms of order ε. The resulting equations for v0, T1 and u1 are

−∂v0

∂ξ
− Ṽ ∂ū0

∂x
eiω(t−ξ)+στ = Ṽ

i

γω
(Axx + ω2A) eiωt+στ, (50)
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∂T1

∂t
+
∂T1

∂ξ
− γ − 1

γ

∂p1

∂t
= −

[(
σ +

νω2

Pr

1

Ṽ 2

)
T̄0 + Ũ

∂T̄0

∂x
+ Ṽ

∂T̄0

∂r

]
eiω(t−ξ)+στ, (51)

∂u1

∂t
+
∂u1

∂ξ
+

1

γ

∂p1

∂x
+

i

γω

(
σAx + ŨAxx +

∂Ũ

∂x
Ax

)
eiωt+στ

= −
[(
σ +

∂Ũ

∂x
+ νω2 1

Ṽ 2

)
ū0 + Ũ

∂ū0

∂x
+ Ṽ

∂ū0

∂r

]
eiω(t−ξ)+στ. (52)

We eliminate secular terms by equating the terms on the right-hand sides of (50)–(52)
to zero, thus obtaining the desired amplitude equations

Axx + ω2A = 0, (53)(
σ +

νω2

Pr

1

Ṽ 2

)
T̄0 + Ũ

∂T̄0

∂x
+ Ṽ

∂T̄0

∂r
= 0, (54)

(
σ +

∂Ũ

∂x
+ νω2 1

Ṽ 2

)
ū0 + Ũ

∂ū0

∂x
+ Ṽ

∂ū0

∂r
= 0. (55)

Solving (53), with the boundary condition (34), together with (28), yields

A(x) = cos (ωx), (56)

where, with the appropriate choice of λ, A(0) has been normalized to 1. Thus, the
zeroth-order pressure oscillation is given by

p0 = cos (ωx) eiωt+στ, (57)

corresponding to classical acoustics. We anticipate here the result, obtained later in
§ 5, that, because At/a

2 = O(ε), the pure acoustic component of u0 is zero at x = 1,
so that Ax(1) = 0 and sinω = 0. So that ω = nπ with n an integer.

To compute T̄0 and ū0 we shall replace the variables r and x by r and the stream
function Ψ̃ = xF(r) of the steady flow. Equations (54) and (55) transform to the
system (

σ +
νω2

Pr

r2

F2

)
T̄0 − F

r

∂T̄0

∂r
= 0, (58)(

σ +
1

r

dF

dr
+ νω2 r

2

F2

)
ū0 − F

r

∂ū0

∂r
= 0, (59)

which involves only derivatives with respect to r with Ψ̃ fixed. We can solve these
equations, accounting for the boundary conditions (32), to calculate T̄0 and ū0 – and
thus the amplitudes of the entropy and vorticity waves – given by

T̄0(x, r) = −γ − 1

γ
cos [ωxF(r)] exp

[
−νω

2

Pr
I(r)− σΣ(r)

]
, (60)

ū0(x, r) =
i

γ
sin [ωxF(r)]F(r) exp

[−νω2I(r)− σΣ(r)
]
, (61)

where the functions Σ(r) and I(r), plotted in figure 2, are given by

Σ(r) = −
∫ r

1

r dr

F(r)
, I(r) = −

∫ r

1

r3

F3(r)
dr. (62)
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Integration of (50), taking into account (53), yields

v0 =

[
− i

ω
Ṽ
∂ū0

∂x
e−iωξ +N(x, r)

]
eiωt+στ, (63)

where N(x, r) can be obtained from the solvability conditions of the second-order
problem. Using (38), the first-order correction of the pressure oscillation can also be
written in the form

p1 = B(x) eiωt+στ. (64)

The first-order corrections of the temperature and axial velocity component, given by
the solution (36) and (37) without secular terms, take the form

T1 =
γ − 1

γ
B(x) eiωt+στ + T̄1(x, r) eiω(t−ξ)+στ, (65)

u1 =
i

γω

[
Bx(x) +

i

ω

(
σAx + ŨAxx +

∂Ũ

∂x
Ax

)]
eiωt+στ + ū1(x, r) eiω(t−ξ)+στ, (66)

where T1 and u1 are written in terms of their acoustic parts T̂ ′1 and û′1 represented by
the first terms on the right-hand sides of (65) and (66) and the entropy and vorticity
parts, given by the last terms of these equations. The density correction ρ1 is obtained
from (39). To calculate v1 we use (35) with the previous results to distinguish secular
from non-secular terms. Finally, the equation for v1 takes the form

− 1

Ṽ

∂v1

∂ξ
+

i

ω

[
iω
∂ū1

∂x
− Ṽ

r

∂ū0

∂x
− ∂

∂r

(
Ṽ
∂ū0

∂x

)]
eiω(t−ξ)+στ − νω2

Pr

1

Ṽ 2
T̄0 eiω(t−ξ)+στ

=

[
i

γω

[
Bxx + ω2B +

i

ω
(σAxx + 2ŨxAxx + ŨAxxx)

]

+
N

r
+
∂N

∂r
+
σ

γ
A+

1

γ
ŨAx

]
eiωt+στ. (67)

We eliminate the secular terms by equating the right-hand side of this equation to
zero, and thus obtain the equation for N(x, r), whose general solution is

N(x, r) =
1

r
G(x) +

r

2iωγ
(ω2B + Bxx − 2iωσA)− 2

γ
(xAx + A)

F(r)

r
. (68)

The boundary condition (31) for v0 implies that N(x, 0) = 0 and hence G(x) = 0. At
this point, using the pressure-coupled response of the solid propellant for v0, relation
(33), the equation for B(x) is generated,

ω2B + Bxx = 2iω[(−γAb0
+ σ + 3) cos (ωx)− 2ωx sin (ωx)], (69)

and, when used in (68), we obtain

N(x, r) = −2

γ
[cos (ωx)− ωx sin (ωx)]

F(r)

r
+
r

γ
[(−γAb0

+ 3) cos (ωx)− 2ωx sin (ωx)].

(70)

If we integrate (69) with the normalization condition Bx(0) = 0 resulting from (43),

B(x) = δ cos (ωx) + iωx2 cos (ωx) + i[−γAb0
+ σ + 2]x sin (ωx), (71)

with δ a constant. In the following we shall write δ = 0, based on our choice of the
normalization of the oscillation amplitude of the pressure at x = 0.
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Figure 3. The entrance and throat regions of the nozzle.

We thus have, aside from the values of ω and σ, a complete description of the
zeroth-order flow field, and also p1 and the acoustic parts of u1 and T1.

5. Nozzle analysis
Up to now we have not used the boundary conditions at the chamber exit, which

are needed to determine the angular frequency ω, as well as the growth rate (real
part of σ) and the small correction to the frequency (imaginary part of σ). These
boundary conditions, representing the nozzle admittance function, depend on how the
non-steady flow evolves through the nozzle. If we were to consider the flow toward
supersonic velocities in the nozzle as irrotational, isentropic and quasi-steady, then
the flow would be choked with the sonic condition at the throat. However, due to the
time variations and the vorticity and entropy waves of the flow entering the nozzle
the choking conditions at the throat have to be described. Thus, we shall account
here for non-steady effects in the evolution of the flow field through the nozzle, as
done previously by Crocco & Cheng (1956) and Crocco & Sirignano (1967), and also
for the possible effects, not considered previously, of the entropy and vorticity waves
in this flow.

We shall take advantage in our analysis of the fact that the throat area is ε times
smaller than the cross-sectional area of the chamber, and divide the nozzle into the
two regions sketched in figure 3, with steady-flow Mach numbers of order ε and 1.
The first region is at the entrance of the nozzle, with cross-sectional area of order a2,
where the velocity of the mean flow is still, of the order εcb, small compared with the
speed of sound cb. We shall consider that the characteristic length of this region is
of order a, small compared with L. The volume Ω of this region is Ω = β′πa3, with
β′ = O(1), small compared with the chamber volume πa2L. The second region of the
nozzle is the throat region, with slowly varying cross-sectional area of order επa2, so
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that the quasi-steady velocity is of order cb. The flow in this region can be treated
as quasi-steady, because the residence time is much shorter than the acoustic time
and, then, the stagnation enthalpy and entropy, as well as the ratio of the vorticity to
the product of the density and the local radius, are, in first approximation, conserved
along each streamline. The separate simplified analysis to be carried out for the two
regions has a common domain of validity in the intermediate region, represented by
a station I , so that the flow in the low Mach number region can be matched with
that of the quasi-steady region.

For the analysis of the flow in these regions, we need to solve the conservation
equations with a multiple scale technique, in a form similar to that used in § 4. The
fluid variables to be determined in the nozzle are the steady flow values of the density
ρ̃, pressure p̃ and temperature T̃ , measured in terms of ρb, pb and Tb, respectively,
the steady velocities ũ and ṽ, based on cb, and the non-steady perturbations λρ′, λp′,
λT ′ and λu′, measured in terms of ρb, pb, Tb and cb, which are the orders of these
variables in the quasi-steady region. In the following the oscillations will be separated
into their acoustic contributions, denoted with a hat, and the rapid radially varying
contributions, denoted with an overbar. Thus, for example ρ′ = ρ̂′ + ρ̄′.

5.1. Low Mach number entrance region of the nozzle

In the entrance region of the nozzle the mean flow values of ũ and ṽ are of order ε,
so that in this region

ũ/ε = ũ1 and ṽ/ε = ṽ1 (72)

are of order unity.
The overall mass conservation equation, written below as (73), will also show that

the acoustic part û′ of the velocity oscillations u′ in this entrance region is also of
order ε. On the other hand, the vorticity part of the velocity is, as in the exit section
of the chamber, of order unity, so that according to the momentum equation, the
spatial variations in this region of the pressure oscillations from the value p0E , given
by (57), in the exit section of the chamber are of order ε2.

We can write, in non-dimensional form, the mass conservation equation for the low
Mach number region between the sections E, at the end of the chamber, and I , as

ε′
∫
Ω̃

∂ρ′

∂t
dΩ̃ = G′E − G′I , (73)

where Ω̃ is the volume of the entrance region, measured in terms of a3, and λG′E and
λG′I are the oscillating parts of the mass fluxes, given by

G′E =

∫
SE

(ρ̃u′ + ρ′ũ)E dSE, (74)

G′I =

∫
SI

(ρ̃u′ + ρ′ũ)I dSI , (75)

where the integrals are taken over the cross-sections SE and SI , measured in terms
of a2.

In the throat region, where the Mach number is of order 1, the flow is quasi-steady,
and so we can write

G′I = G′T =

∫
ST

(ρ̃u′ + ρ′ũ)T dST , (76)

neglecting terms of order higher than ε that will not be considered in the analysis
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that follows. To obtain the value of G′T , of order ε because ST = O(ε), we have to
carry out an analysis for the quasi-steady region of the nozzle in order to calculate u′
and ρ′ at the nozzle throat. However, we have now reasons, based on the orders of
magnitude of the terms in (73), to state that G′E is O(ε). Although the non-acoustic
part of the velocity oscillations are of order unity, their contribution to G′E is of order
ε due to their rapidly radially oscillating character. Then the acoustic part of the
oscillating velocity, must be of order ε in the entrance section E, and thus we may
now conclude that Ax(0) = 0, or

sinω = 0, (77)

providing the first approximation for the frequency

ω = ωn = nπ, (78)

where n is an integer, corresponding to the longitudinal acoustic modes in the chamber.
G′E is computed from the solution obtained, at x = 1, in the chamber analysis, so

that ρ̃ = 1 and ũ = εr−1 dF/dr. Thus

G′E =

∫ 1

0

(
[ū0]x=1 eiωt+στ−iωξ + ε

[
û′1 + ρ̂′0

1

r

dF

dr

]
x=1

)
2πr dr, (79)

where we have left out other terms leading to contributions of order ε2 or higher.
The first integral, aside from the factor eiωt+στ, is

J =

∫ 1

0

i

γ
sin [ωF(r)]F(r) exp [−νω2I(r)− σΣ(r)] exp (−iω 1

ε
Σ(r))2πr dr

=

∫ 1

0

L(r) exp (−iω 1
ε
Σ(r)) dr, (80)

where L and Σ are smooth functions of r, and Σ(r) is strictly monotone. Using
integration by parts, taking into account (18) and leaving out terms of order ε2,

J = ε

[
−L(r)

Ṽ

iω
exp (−iω 1

ε
Σ(r))

]1

0

= −εL(1)
i

ω
= ε

2π

γω
sinω, (81)

because Ṽ (0) = 0. We find the same lowering of the order in ε when evaluating
other integrals of the same type representing the effects of the vorticity and entropy
waves. Their contribution involves the values at the limits of the integration domain,
in particular at the propellant surface r = 1. Notice that due to (77), J = 0 to the
order ε.

When the remaining terms in (79) are evaluated, taking into account that because
sinω = 0,

[û′1]x=1 =

(
γAb0

− σ − 4 +
1

r

dF

dr

)
cosω

γ
eiωt+στ, (82)

we obtain

G′E = επ(Ab0
− σ/γ) cosω eiωt+στ. (83)

In the end section E of the chamber we find rapid radial oscillations of vorticity
and entropy associated with the time Σ(rE)/ε, defined in (18), required for a fluid
particle to travel with the steady radial velocity from the propellant surface to the
radius rE . The additional residence time of the fluid particle in the nozzle, when it
moves following very approximately the quasi-steady streamline, is ε′ times smaller
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than Σ/ε; and thus, the viscous and heat conduction effects can be neglected in the
nozzle, if terms of order ε are neglected. Then, in their motion between sections E
and I along the steady streamlines the fluid particles will conserve the values of the
entropy and, also, of the vorticity divided by r that they had when they crossed
the entrance section E. This is so because the pressure gradients are weak enough
between E and I to allow us to neglect the baroclinic generation of vorticity.

The entropy s′ and the vorticity ω′ are scaled with cv and cb/εa, respectively. The
wavelength of the entropy and vorticity waves in this region are of the same order, ε,
as in the chamber; but this is reduced at I by a factor rI/rE with the reduction of the
cross-sectional area of the nozzle. Then, while the spatial entropy fluctuations at I
keep the order that they have at E, the velocity fluctuations are reduced by the factor
SI/SE , because the vorticity and the wavelength are both reduced by the factor rI/rE .

In summary, in the low Mach number region between sections E and I the acoustic
part of the velocity fluctuations is of order ε, the spatial variations of the pressure
are of order ε2, so that we can approximate p′ by p̂′E , and then ρ̂′ = ρ̂′E = p̂′E/γ. The
non-acoustic part ρ̄′ of ρ′ is rapidly oscillating, with a wavelength of order ε, so that
its contribution to the first term in (73) is of order ε2. Then, (73) becomes

πε′β′
iω

γ
p̂′E = G′E − G′T . (84)

5.2. Quasi-steady throat region of the nozzle

In this region the residence time is small, of order εta, so that, as in the chamber, the
contribution of the viscous stresses and the thermal conductivity are of order ε, and
thus, in first approximation, the entropy and the stagnation enthalpy are conserved
along the streamlines, yielding(

1 + λp′I
p̃+ λp′

)(γ−1)/γ

=

(
1 + λρ′I
ρ̃+ λρ′

)γ−1

=
1 + λT ′I
T̃ + λT ′

= 1 +
γ − 1

2
M2. (85)

When writing (85) we have assumed that at station I M2 = u2/T is small compared
with unity. The assumption of uniform pressure across the slowly varying cross-
section in the nozzle region implies that M is also uniform across the sections. The
relations (85) should be linearized, around the mean values. If we split the oscillating
variables into their acoustic and non-acoustic components, represented in this section
with primes and an overbar, we obtain from the linearized form of (85)(

1

p̃

)(γ−1)/γ

=

(
1

ρ̃

)γ−1

=
1

T̃
= 1 +

γ − 1

2
M̃2, (86)

with M̃ = ũ/
√
T̃ , giving the mean flow variables in terms of p̃(z).

For the acoustic oscillations, also uniform across the nozzle sections, we obtain(
p̂′I − p̂′

p̃

)
= γ

(
ρ̂′I − ρ̂′

ρ̃

)
=

γ

γ − 1

(
T̂ ′I − T̂ ′

T̃

)
= γM̃M̂ ′

/(
1 +

γ − 1

2
M̃2

)
, (87)

with γρ̂′I = γT̂ ′I/(γ − 1) = p̂′I = p̂′E = p0E , and

M̂ ′ = M̃

(
û′

ũ
− 1

2

T̂ ′

T̃

)
. (88)
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The non-acoustic radial oscillations ρ̄′, T̄ ′ and ū′ are given by the relations

ρ̄′/ρ̃ = ρ̄′I , 2̄ū′/ũ = T̄ ′/T̃ = T̄ ′I , (89)

based on p̄′ = 0, and therefore M̄ ′ = 0. These are valid through the whole quasi-steady
region of the nozzle, and in particular at the throat. They allow us to calculate, in the
throat region of the nozzle, the evolution along each streamline of the non-acoustic
part of the fluctuations of the density, temperature and velocity in terms of the mean
flow variables, given by (86) in terms of p̃(z), and the fluctuations ρ̄′I and T̄ ′I at the
station I given by T̄ ′I/T̃I = −ρ̄′I/ρ̃′I = s̄′I/γ. Although the vorticity waves coming from
the chamber are attenuated in the entrance region of the nozzle so that ū′I = 0, new
vorticity arises in the throat region due to the radial density oscillations coupled with
the strong pressure gradient. This results in the values of ū′ given by (89).

In order to calculate p(z) = p̃(z) + λp̂′(z), we shall use the mass conservation
equation integrated across the section z of the nozzle. This can be written as

r2
b(z) = 2

∫ Ψb

0

dΨ

ρu
, (90)

where Ψb is the constant value of Ψ at the nozzle wall with radius rb(z), and ρu is
evaluated in terms of Ψ and p using the relations (86)–(89).

At the nozzle throat drb/dz = 0, which is equivalent to drb/dp = 0 because
dp/dz 6= 0. Therefore, the following relation is obtained (criticality condition at the
nozzle throat): ∫ Ψb

0

∂

∂p

(
1

ρu

)
Ψ

dΨ =

∫ Ψb

0

(
p−

3γ+1
2γ

1

γ

1−M2

M3

)
dΨ = 0. (91)

The final form for the criticality condition at the throat section T is∫ Ψb

0

1−M2

M3
dΨ = 0, (92)

which, because M is uniform across the section, leads to M = 1; and this implies
M̃T = 1 and M̂ ′

T = 0.
Then, at the nozzle throat we obtain the well-known relations

p̃
(γ−1)/γ
T = ρ̃

γ−1
T = T̃T = ũ2

T = 2/(γ + 1) (93)

for the mean flow, and

p̂′I −
(
p̂′

p̃

)
T

= ρ̂′I −
(
ρ̂′

ρ̃

)
T

= T̂ ′I −
(
T̂ ′

T̃

)
T

=

(
û′

ũ

)
T

− γ − 1

2γ

(
p̂′

p̃

)
T

= 0 (94)

for the acoustic components; in these equations we can write γρ̂′I = T̂ ′Iγ/(γ − 1) =
p̂′I = p̂′E = cosω eiωt+στ. The non-acoustic oscillations at the throat of the nozzle are
given by (89), and thus they depend on Ψ through the dependence of ρ̄′I and T̄ ′I on Ψ .
(Their dependence on r at the throat can be obtained from the definition Ψr = rρu.)

The mass flux G′T can be evaluated now in terms of the profiles at the throat
calculated above. Again, due to their rapid radial oscillations, the contributions of ρ̄′
and ū′, associated with the entropy and vorticity waves, are of higher order than ε
and can be neglected. Thus, we obtain

G′T = Ĝ′T = ε2π

(
û′

ũ
+
ρ̂′

ρ̃

)
T

= ε2π
γ + 1

2γ
p̂′E, (95)
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where we have used (94), and p̂′E = p0E . This can also be written as

G′T = Ĝ′T = ε2π
(
AN0

+ 1/γ
)

cosω eiωt+στ, (96)

in terms of AN0
= (γ − 1)/2γ, the classical quasi-steady nozzle admittance function.

6. Oscillation growth rate and frequency correction
Now we have the elements necessary to determine the stability exponent σ, which

includes the frequency correction to ω = nπ given by σI = Im (σ), and the growth
rate of the oscillations, σR = Re (σ). To do this, we use (83) and (96) in (84) and thus
we obtain

σ = γ(Ab0
− 2AN0

)− 2− iωβ, (97)

where we have defined β = β′ε′/ε = (Ω/πa3)ε′/ε, of order unity. This expression
for the stability exponent includes four contributions to the growth rate. The first
term is due to the response of the combustion of the propellant under the action
of the acoustic pressure oscillations. This effect can act as a driving mechanism of
the combustion instability when Re (Ab0

) > 0. The second contribution, associated
with acoustic energy losses through the nozzle, leads to damping, because AN0

=
(γ − 1)/2γ > 0. The third contribution, −2, is due to the mean flow/unsteady flow
interaction; it leads to damping proportional to the gasification velocity coming from
the propellant surface. This contribution can be better understood if the method of
acoustic energy balance is used. Half of the damping, −1, comes from the fact that
the mean flow carries part of the acoustic energy through the nozzle. It is equal to the
difference between the acoustic energy brought into the chamber by the mean flow
and the energy sink corresponding to the nozzle exit. The other half, −1, corresponds
to what has been called flow turning by Culick (1975), and has also been included in
our analysis. It results from the interaction with the mean flow of the unsteady flow
field which must satisfy the no-slip condition. The flow turning is not related to the
fluid viscosity and the result is independent of ν; a discussion of the different ways
to calculate the flow turning effects is presented in the Appendix. The last term in
(97) is a frequency shift; it corresponds to an apparent elongation of the chamber to
increase its volume by that of the entrance region of the nozzle.

An interesting result of the analysis is that none of the contributions to the growth
rate, aside from the propellant admittance, Ab0

, depends, to the order ε considered,
on the viscosity parameter ν.

Although we were expecting an additional damping due to the energy losses
through the nozzle, associated with the unsteady outflow produced by the vorticity
and entropy waves, we have found that, due to their small wavelength, its effect is of
higher order in our linear stability analysis.

7. Discussion of the results and stability domain
The analysis carried out in the previous sections gives a full description of the

unsteady flow field. In figures 4 and 5 we show the transverse profiles of the fluctuating
part of the axial velocity and the temperature, for the first and second modes evaluated
for σ = 0, at four different axial positions, for typical values of the parameters. Notice
that near the chamber axis, once the vorticity and entropy waves are damped, we
recover the pure acoustic solution. Numerical studies and experiments (see Avalon &
Comas 1991; Vuillot 1991; Vuillot & Avalon 1991) predict the same behaviour with
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Figure 4. The zeroth-order axial velocity oscillation for the first (solid) and second (dashed)
modes at four different axial positions with ε = 0.1, νπ2 = 1 and σ = 0.

rapid radial oscillations near the chamber wall, recovering the classical acoustic plane
wave solution near the chamber axis.

According to (97), the oscillations in the solid rocket motor become linearly unstable
if Re (Ab0

) > (γ + 1)/γ. Here γ is the ratio of the specific heats of the combustion
products; a typical value of γ is 1.3 used below in our calculations. The neutral
stability boundary is given by

Re (Ab0
) = (γ + 1)/γ (98)

in terms of the real part of the solid propellant admittance Ab0
, a function of the

frequency of oscillation. This function needs to be obtained from experiments or
computed using models of the solid propellant combustion subjected to gas-phase
pressure oscillations.

For the longitudinal acoustic modes, the acoustic time ta = L/cb is moderately large
compared with the residence time, tf = lf/Vb, of the gas phase in the thin reaction
layer of thickness lf = αb/V

2
b . Therefore, a quasi-steady treatment of the gas phase

appears justified. The analysis of the response function carried out by Denison &
Baum (1961) and, later, by Culick (1967) and Krier et al. (1968) used the assumption
of quasi-steadiness in the gas-phase response. T’ien (1972), in his numerical analysis
of the problem, retained unsteady effects in the gas phase, recovering the Denison
& Baum model in the low-frequency range. The low-frequency value of Re (Ab0

)
should correspond to the quasi-steady response of both the solid and gas phase; it
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Figure 5. The zeroth-order temperature oscillation for the first (solid) and second (dashed) modes
at four different axial positions with ε = 0.1, νπ2/Pr = 1 and σ = 0.

is typically negative leading to damping oscillations. A more recent analysis, together
with a discussion of the literature, is found in the paper by Clavin & Lazimi (1992),
where they use numerical and analytical techniques to describe, accounting for the
effects of gas phase non-steadiness, the dependence of Ab0

on frequency for the full
frequency range. They showed how gas-phase unsteady effects substantially modify
Ab0

, even at frequencies fairly small compared with 1/tf .
As an example, we shall use, in our description of the solid propellant instabilities,

the values of Ab0
resulting from the Clavin & Lazimi analysis. These values depend

on a large number of parameters. In our calculations, leading to figures 6 and 7, we
have used for most of the parameters the values chosen by Clavin & Lazimi in their
calculations (γ = 1.3, βg = 8, Le = 1, βg/βs = 0.1 and βgI = 0.2), but we have varied

two parameters, r(s) and βg∆θ̄s, that have a strong influence on Ab0
. One parameter,

r(s) = ρ2
s αs/ρ

2
bαb, is the product of the square of the solid-to-gas density ratio and the

ratio of the thermal diffusivities; r(s) is inversely proportional to the chamber pressure
pb, and typically ranges from 10 to 60. The second parameter, βg∆θ̄s, is proportional
to the non-dimensional activation energy of the gas-phase reaction and the difference
in temperature between the initial solid temperature and its value in the solid–gas
interface. The domain of instability increases with, and is sensitively dependent on,
the value of this parameter. In our calculation we have considered the Lewis number
Le of the gas phase to be unity; the instability domain shown in figure 7 is enlarged
if Le > 1.
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Figure 6. Real part of the solid propellant admittance function Ab0
as a function of the angular

frequency Ω = nπεν/Pr for different solid-to-gas density ratios r(s) = ρ2
s αs/ρ

2
bαb and βg∆θ̄s = 2.4.

The line (γ + 1)/γ, with γ = 1.3, defines the stability boundary. The inset is an enlargement for the
frequency domain where Re (Ab0

) peaks.

The Clavin–Lazimi theory gives the results, plotted for various r(s) and βg∆θ̄s = 2.4
in figure 6, for the real part of the admittance as a function of their non-dimensional
frequency Ω, based on tf . Notice that Ω is equal to our non-dimensional frequency
ω times the ratio tf/ta. For the basic frequencies that we encounter in our analysis,
ω = nπ, the resulting values of Ω are nπtf/ta = nπεν/Pr. It turns out that the peak
values of the real part of Ab0

are found for values of Ω of order 0.2, which correspond
to not unreasonable values of nπεν/Pr for the first two modes, n = 1 and 2.

The stability boundary in the parameter plane (r(s), Ω) is given by (98). It is plotted
in figure 7, not only for the value βg∆θ̄s = 2.4 used in figure 6, but also for other

values of βg∆θ̄s. Notice that Ω = nπ(αb/V
2
b )(cb/L) is pressure independent for the

value ng = 0.5 used by Clavin & Lazimi, and increases linearly with n/L.
The experimental results of Horton & Price (1963), Traineau, Prevost & Tarrin

(1994) and Cauty (1999) show how the solid admittance function has a peak value,
higher than (γ + 1)/γ ' 1.77, in the frequency range of 100 Hz to 3000 Hz, which
belongs to the low-frequency domain corresponding to the longitudinal modes. Notice
that if the classical result for Ab0

= ng − 1 < 0, as given by the linearization of the St.
Robert’s law, is used instability can never be achieved. But this result is only valid for
very low frequencies, i.e. at most 10 Hz, which are lower than the first longitudinal
mode in solid propellant motors. The peak value of Re (Ab0

) is associated with growing
unsteady effects, first in the solid phase and later in the gas phase.
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line corresponds to the value, βg∆θ̄s = 2.4, used in the determination of the response function given
in figure 6.

8. Conclusions
We have carried out a linear analysis of the evolution of the longitudinal acoustic

oscillations within the chamber of solid propellant rockets with an axis-symmetric
configuration. The analysis is based on the assumption that the chamber is slender
(ε′ = a/L � 1) and axially symmetric, and that the Mach number, Mb, of the
burned gases, when they leave the thin reaction layer radially, is small enough that
the Mach number of the axial steady flow ε = Mb/ε

′, typically of order ε′, is also
small compared with 1. Then, as stated in the Introduction, within the chamber we
encounter vorticity and entropy waves, involving several time and length scales, thus
enabling us to use the method of multiple scales to obtain an analytical description of
the zeroth-order unsteady flow field, and the linear growth rate of the disturbances.
The method can be used in a straightforward way to obtain higher-order terms in
the perturbation scheme.

The origin of the vorticity waves that we describe in our analysis was clarified by
Flandro, beginning with his work of (1989), where the radial oscillations are described
assuming the radial velocity to be constant. In his more recent review paper of (1995),
he allows for the radial variations of V to calculate the vorticity waves, and predicts
a value of σ that differs from our result given in (97), mainly due to an error in his
handling of the boundary condition for v′ at the propellant surface.

The presence of the vorticity and entropy waves, with a wavelength l0 = εa,
independent of viscosity and heat conduction, but an amplitude that decreases at fixed
r with increasing values of ν, leads to a growth rate σR of the acoustic disturbances
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that turns out to be independent of ν. This is due to the fact that the effects of
these waves on the nozzle admittance cancel in a first approximation, as a result
of their rapid radial variation around the mean. To obtain the growth rate of the
disturbances we have used the boundary conditions, on the wall and at the exit of
the chamber, for the differential equations that describe the time and space evolution
of the disturbances. It could also be derived, as indicated in the Appendix, by a
global acoustic balance method involving surface integrals. This procedure was used
by Mazon (1996), where the effects of particles on the damping was also taken into
account.

It is important to observe that in our analysis the only term which can trigger
instabilities is the response of the solid propellant burning. We have found that for
typical values of the parameters of solid propellant rockets, the longitudinal modes
can be unstable. More accurate combustion models of the solid propellant response
to pressure oscillations will lead to more exact admittance functions, and better linear
instability predictions.

We have considered in our analysis that the outer toroidal recirculating region in
the entrance of the nozzle, shown by numerical descriptions of the basic flow and
sketched in figure 3, does not periodically shed gases to modify significantly the nozzle
admittance.

The linear stability analysis presented here is the basis for the nonlinear analysis
by Perrin & Clavin as presented in Perrin (1996). Note that when λ grows to O(ε)
nonlinear effects will modify the evolution equations (54) and (55) for the amplitude,
ū0 and T̄0, of the radial oscillations of velocity and temperature in the bulk of the
chamber. In addition, the nonlinear effects could also introduce changes in G′E due
to the term λ

∫
ρ̄′ū′ dSE; the combined action of the vorticity and entropy waves will

lead in the nonlinear theory to coupling of the acoustic modes.

This work was supported by the Spanish CICYT, under Contract No. PB94-0400,
and by INTA under the Project Mezcla y Combustión.

Appendix. Flow turning
We shall show, in this Appendix, the relation between our analysis and the method

of evaluation by Culick of the flow-turning effects on the acoustic instabilities. After
the introduction by Culick (1975) of this idea much research has been carried out
to try to clarify this phenomenon; see Baum & Levine (1986), Kuentzmann (1991),
Van Moorhem (1982) and Vuillot & Avalon (1991). The technique of Culick (1970,
1973, 1975) and Culick & Yang (1992), which is based on the integral form of
the equations, is useful for the physical understanding of the stability mechanisms.
It includes a strong over-simplification: the assumption of irrotational acoustics to
describe the unsteady field. If rotational terms are kept, the formula derived by Culick
to compute the stability exponent takes the following form (rewritten in our notation):

−ε2iωσ

∫ 1

0

∫ 1

0

ψnp
′r dr dx = εiω

∫ 1

0

[ψnp
′Ṽ + γψnv

′]r=1 dx

+iω

∫ 1

0

[εψnp
′Ũ + γψnu

′]x=1r dr + εγ

∫ 1

0

∫ 1

0

Ṽ
∂u′

∂r

dψn
dx

r dr dx+ O(ε2), (A 1)

where p′ = ψn eiωt+στ and ψn = cos (ωnx), with ω = ωn = nπ, are the longitudinal
acoustic modes for the closed cylindrical chamber. The last integral is due to the
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rotational flow field and must be evaluated, like the other integrals in (A 1), using
our description of u′, given in (47), together with the boundary condition (16) and
the relation between the classical acoustic velocity oscillation at the chamber exit
and the pressure oscillation, û′/Ũ = εANE

p̂′ = ε(AN0
+ iωβ/2γ)p̂′. Thus, we obtain

σ = γ(Ab − 2ANE
)− 2, the value for the stability exponent given in (97).

Culick (1973) also developed an approximate one-dimensional theory that surpris-
ingly leads to the same result, due to the presence of a term named the one-dimensional
flow turning correction. Flandro (1995) has already given evidence for the justification
of this correction in terms of the contributions of the two-dimensional rotational flow.
The flow turning is, as pointed out by Flandro, a volumetric effect represented by
the last term in (A 1). We shall briefly show here how, beginning with the three-
dimensional description (A 1), we can reduce the volume integral in (A 1) to a contour
integral identical to the one in Culick’s one-dimensional flow formulation. Of the
various contributions to the last integral in (A 1), associated with rotational flow field
effects, if we leave out terms of higher order, the main contribution comes from the
term ∫

V

Ṽ
∂u′

∂r

dψn
dx

d(πr2) dx =

∫
V

Ṽ ξr
∂u′

∂ξ

dψn
dx

d(πr2) dx = K eiωt+στ, (A 2)

where, if we take into account that ∂u′/∂ξ = −iωū eiω(t−ξ)+στ, and remembering the
definition (18) of the rapid transverse variable ξ,

K =

∫ 1

0

[∫ 1

0

−1

ε
iωū

dψn
dx

e−iωξ 2πr dr

]
dx. (A 3)

Using again integration by parts for ε→ 0, we obtain

K =

∫ 1

0

−1

ε
iω

(
dψn
dx

)[
− 1

iωξr
ū e−iωξ 2πr

]r=1

r=0

dx. (A 4)

The value of the integrand is obviously zero at r = 0, and only the contribution at
the chamber wall remains. If we recall the no-slip boundary condition (32) at the
propellant surface, we conclude that there the amplitude of the vorticity wave must be
equal to the amplitude of the acoustic wave, namely (ū e−iωξ)r=1 = −(i/γω)(dψn/dx).
Then,

K =

∫ 1

0

(
dψn
dx

)[
1

εξr

i

γω

(
dψn
dx

)
2π

]
r=1

dx =

∫ 1

0

i

γω

(
dψn
dx

)2 [−2πṼ (1)
]

dx, (A 5)

where the factor [−2πṼ (1)] in (A 5) represents the volumetric flux entering the
chamber per unit length and time. This expression for K is identical to the flow
turning term in Culick’s one-dimensional analysis. Thus, we conclude that the three-
dimensional, global balance, formulation is accurate if the rotational effects are
retained, and coincides with the results given by the analysis performed with the
differential equations and with the one-dimensional acoustic balance method. The
details of the vortical oscillating field need not be known to calculate its contribution.
We need only to know its structure and the fact, used in the evaluation of K , that
the wavelength of the radial oscillation is small, of order ε, compared with the radius
of the chamber. This integral analysis also shows how the results are independent of
the value of the viscosity. The flow turning is due to the no-slip condition and to the
interaction of the mean flow and the acoustic flow field.
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